About Us

Executive Editor:
Publishing house "Academy of Natural History"

Editorial Board:
Asgarov S. (Azerbaijan), Alakbarov M. (Azerbaijan), Aliev Z. (Azerbaijan), Babayev N. (Uzbekistan), Chiladze G. (Georgia), Datskovsky I. (Israel), Garbuz I. (Moldova), Gleizer S. (Germany), Ershina A. (Kazakhstan), Kobzev D. (Switzerland), Kohl O. (Germany), Ktshanyan M. (Armenia), Lande D. (Ukraine), Ledvanov M. (Russia), Makats V. (Ukraine), Miletic L. (Serbia), Moskovkin V. (Ukraine), Murzagaliyeva A. (Kazakhstan), Novikov A. (Ukraine), Rahimov R. (Uzbekistan), Romanchuk A. (Ukraine), Shamshiev B. (Kyrgyzstan), Usheva M. (Bulgaria), Vasileva M. (Bulgar).

Additional Information

Authors

Login to Personal account

Home / Issues / № 2, 2015

Chemical sciences

HOMOLOGY MODEL OF THE STRUCTURE FORMATION OF THE ORDERED LITHIUM-CONTAINING ALLOYS
Ivanov V.V.

The homology models of the structure formation of the ordered lithium containing alloys LixMe (Me - Sn, Pb) and the results of the structural modeling were discussed in [1, 2]. The structures of the ordered alloys - the members of the one dimension homology Li3n-2Men (n = 2 - 6, ∞) (tabl.1) and Li5n-3Men (n = 2 - 6, ∞) series (tabl.2) were obtained. The structural modeling results for allows are confirmed by known experimental dates received in Li - Sn and Li - Pb systems for the ordered allows LiSn, LiPb, Li2Sn and Li2Pb with rhombohedral structures , allows Li7Sn3, Li5Sn2 , Li8Pb3  and Li13Sn5 with structures of the monoclinic phases, and allows Li3Bi, Li3Sb and Li3Pb with cubic structures were obtained, too (tabl.1,2).

Table 1. Ordered alloys structures of the homological series Li3n-2Men

Number of homolog

Composition

Space group of symmetry (z)

Crystallographic positions for atoms

Relative metrical parameters of the unite cell

1

LiMe

R`3m (z=6)

Li: 3(a) + 3(b), Me: 6(c)

a = 0,67.3-1/2a0, c = 3c0

2

Li2 Me

P`3m1 (z=1)

Li: 2(d), Me: 1(a)

a = a0 , c = c0

3

Li7 Me3

C2/m (z=4)

Li: 7*4(i), Me: 3*4(i)

a = 31/2a0 ,b =  a0

c = 6,67c0 , b = 980

4

Li5 Me2

C2/m (z=4)

Li: 5*4(i)

Me: 2(a)+2(d)+4(i)

a = 31/2a0 , b =  a0

c = 4,67c0, b= 1000

5

Li13 Me5

C2/m (z=2)

Li: 2(c) + 6*4(i)

Me: 2(a) + 2*4(i)

a = 31/2a0, b =  a0

c = 6c0, b = 900

6

Li8 Me3

C2/m (z=2)

Li: 4*4(i)

Me: 2(a)+4(i)

a = 31/2a0, b = a0

c = 3,67c0, b= 1040

Li3 Me

Fm3m (z=4)

Li: 4(b)+8(c) Me: 4(a)

a = 0,67(3a02 + 4c02)1/2)

 

The supposition about rise of crystallographic displacement dimension from one to two or free for homolog LixMe with x more than 3,5 and for all homolog Li5n-3Men series were suggested. Since second member of series the structure formation is characterized as a 2D or 3D crystallographic displacement into initial rhombohedral structure. The character alteration of the "concentration - allow density" dependence for LixMe at x = 3,5 was confirmed this rise [3].

Table 2. Ordered alloys structures of the homological series Li5n-3Men

Number of homolog

Composition

Space group of symmetry (z)

Crystallographic positions for atoms

Relative metrical parameters of the unite cell

1

Li2 Me

P`3m1 (z=1)

Li: 2(d),   Me: 1(a)

a = a0, c = c0

2

Li7 Me2

P`3m1 (z=1)

Li:1(a)+2(c)+2*2(d),

Me: 2(d)

a = a0, c = 3c0

3

Li4 Me

P`3m1 (z=3)

Li: 2*2(c)+4*2(d),

Me:1(a)+2(d)

a = a0, c = 5c0

4

Li17 Me4

C2/m (z=4)

Li: 17*4(i),

Me: 2(a)+2(b)+ 2*4(i)

a = 31/2a0, b =  a0

c = 14c0, b = 900

5

Li22 Me5

C2/m (z=2)

Li: 11*4(i),

Me: 2(a)+2*4(i)

а= 31/2a0, b = a0

c = 9c0, b = 900

6

Li9 Me2

C2/m (z=2)

Li: 2(b)+4*4(i),

Me: 2(a)+2(d)

a = 31/2a0, b = a0

c = 7,67c0, b = 850

Li5 Me

P`3m1 (z=4)

Li: 4(b)+2*8(c), Me: 4(a)

a = a0, c =  2c0

 

It should be noted that that the method of the forming of one-dimension homological series allows was similar to method elaborated for homological series metal oxides with octahedral structures [4, 5]. Presented structure forming model of the lithium containing allows may be used when parsing mechanism of the structures forming of ordered phases in all poly-component systems with manifestation of the structural homology or included the qualities of the corresponding nano-objects set [6, 7].



References:
1. Ivanov V.V. Homology model of the structure formation of the ordered alloys Li3N-2MeN series // Mezhdunarodnyj zhurnal ecsperimental’nogo obrazovaniya. 2015. - №11 (Part 2). – С.215-217.

2. Ivanov V.V. Homology model of the structure formation of the ordered alloys Li5N-3MeN series // Mezhdunarodnyj zhurnal prikladnyh i fundamental’nyh issledovanii. 2015. - №10 (Part 3). – С.461-463.

3. Ivanov V.V. Combinatorial modeling of the probable structures of inorganic substances. – Rostov on the Don: Izd-vo SKNC VSh, 2003. – 204 с.

4. Ivanov V.V., Ereiskaya G.P., Lutcedarskii V.A. Forecasting of the one-dimension homology series of metal oxides with octahedral structures. // Izv. AN SSSR. Neorgan. materialy. - 1990. – Т.26. - №4. – С.781-784.

5. Ivanov V.V., Ereiskaya G.P. Structural combinatorial analyze of the one-dimension homology series of the transitional metal oxides with octahedral structures.// Izv. AN SSSR. Neorgan. materialy. - 1991. – Т.27. - №12. – С. 2690-2691.

6. Ivanov V.V. Principles of the structural states forming from nano-dimensional components with account of the qualities of the corresponding nano-objects set // Uspehi sovrem. estestvoznaniya, 2014. - №.7. – С.96-99.

7. Ivanov V.V. Peculiarities of organization and the possible states of the poly-component structures included the crystal component // Uspehi sovrem. estestvoznaniya, 2014. - №.7. – С.93-95.



Bibliographic reference

Ivanov V.V. HOMOLOGY MODEL OF THE STRUCTURE FORMATION OF THE ORDERED LITHIUM-CONTAINING ALLOYS . International Journal Of Applied And Fundamental Research. – 2015. – № 2 –
URL: www.science-sd.com/461-24909 (21.11.2024).