About Us

Executive Editor:
Publishing house "Academy of Natural History"

Editorial Board:
Asgarov S. (Azerbaijan), Alakbarov M. (Azerbaijan), Aliev Z. (Azerbaijan), Babayev N. (Uzbekistan), Chiladze G. (Georgia), Datskovsky I. (Israel), Garbuz I. (Moldova), Gleizer S. (Germany), Ershina A. (Kazakhstan), Kobzev D. (Switzerland), Kohl O. (Germany), Ktshanyan M. (Armenia), Lande D. (Ukraine), Ledvanov M. (Russia), Makats V. (Ukraine), Miletic L. (Serbia), Moskovkin V. (Ukraine), Murzagaliyeva A. (Kazakhstan), Novikov A. (Ukraine), Rahimov R. (Uzbekistan), Romanchuk A. (Ukraine), Shamshiev B. (Kyrgyzstan), Usheva M. (Bulgaria), Vasileva M. (Bulgar).

Additional Information

Authors

Login to Personal account

Home / Issues / № 2, 2015

Phisics and Mathematics

NONTANGENTIAL CONVERGENCE OF THE GENERALIZED POISSON-ABEL MEANS
Nakhman Alexander D.
1. Introduction. Formulation of the problem.  Let  L be class of 2-periodical functions, which are summable  on [–π, π]  and C(0, +∞)  –  class of functions having continuous second derivative on . In this paper we consider the semi-continuous means

                                                =                                                 (1)

of  Fourier series s[f]  of  functions f ∈ L. In the definition (1)

,  

are complex  Fourier coefficients of function   f.

We study the problem of  behavior (1) at , when the point is within the boundaries of the angular  domain

The case of  “radial” convergence  at  was investigated in [1].

2. The main result.  Define

;

let  and

be  Hardy maximal function ([2], vol.1, p.55). 

Theorem 1.  Let the sequence  decreases so rapidly that

                                                  ,                                          (2)

and there is a constant  such that

                                                                                                              (3)

Then for every x the estimate

holds.

       Here and throughout the paper  will represent  constants, which depend only on the explicitly specified indexes.      

3. -estimates.  Let

be a norm in  Lebesgue space  (.

Theorem 2. If the sequence  satisfies the conditions (2) and (3), the following estimates

;

;

                                                      .                                                (4)                 

hold.

3. Nontangential convergence.

Тheorem 3. If  f ∈ L,  the sequence  satisfies (2), (3) and

                                                                 ,                                            

 then  the relation                                                                       

                                                          =                                                   

holds almost everywhere.

This theorem can be proved by the standard method ([2], vol. 2, pp. 464-465) due to the estimate  (4).

4. Exponential means.  Denote now

,     =,

where  ,   and require the following conditions:

А) ;  

         В) () and || decrease to zero as x increases.

Note that

                                      .

and apply twice the  Lagrange  theorem to the second finite differences in (3).

Under the conditions of  B) the sum of (3) is majorized by a corresponding  improper integral and for implementability  of  statements  of  Theorems 1, 2, 3 it is sufficient to require

    .

5. Generalized Poisson-Abel means. Consider in particular the case  of , then

                                        .                                     

Corollary 1.  The statements  of  Theorems  2 and 3 are valid for generalized Poisson-Abel means

                                    = 

  for all ; the constants С  in the estimates   of -norms is .

In particular, the relation

  =,   f ∈ L  ,

(nontangential convergence of Poisson-Abel means) holds for almost all x.

 6. Exponentially-polynomial summation methods. Let now  is a polynomial function of n-th degree

Corollary 2. The assertions of Theorems 2 and 3 are valid for exponentially-polynomial means

= 

 for all ; the constants С  in the estimates   of -norms  is .




References:

1. Nakhman A.D. Еxponential methods of summation of the Fourier series // Transactions of Tambov State Technical University. 2014. V.20, № 1. P. 101-109.

2. Zygmund A. Trigonometric series. Vol. 1, 2. Moscow: “Mir”, 1965. V.1 –615 p., V.2 – 537 p.



Bibliographic reference

Nakhman Alexander D. NONTANGENTIAL CONVERGENCE OF THE GENERALIZED POISSON-ABEL MEANS. International Journal Of Applied And Fundamental Research. – 2015. – № 2 –
URL: www.science-sd.com/461-24943 (22.12.2024).